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 Abstract  

The integration of Artificial Intelligence (AI) in Structural Health Monitoring (SHM) has garnered significant attention in recent 

years, driven by the need for enhanced safety, reliability, and efficiency in infrastructure management. This systematic review 

synthesizes the latest advancements in AI techniques applied to SHM, exploring various methodologies, including machine 

learning, deep learning, and data-driven approaches. We examine a wide range of applications, from real-time damage detection 

to predictive maintenance and anomaly detection in diverse structural types, including bridges, buildings, and offshore structures. 

Despite the promising developments, several challenges hinder the widespread adoption of AI in SHM, including data quality and 

quantity, interpretability of AI models, and integration with existing monitoring systems. We identify critical gaps in the current 

literature and propose future research directions that emphasize the need for robust algorithms, interdisciplinary collaboration, 

and the development of standardized protocols. This review serves as a comprehensive resource for researchers and practitioners 

aiming to advance the integration of AI in SHM, ultimately contributing to safer and more resilient infrastructure systems. 

Keywords: Artificial Intelligence, Structural Health Monitoring, Machine Learning, Deep Learning, Predictive Maintenance, 

Anomaly Detection, Infrastructure Management, Data-Driven Approaches, Challenges and Opportunities and Future Research 

Directions. 
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1. Introduction 
1.1 Background 

Structural Health Monitoring (SHM) has emerged as a critical field 

within structural engineering, focusing on the continuous 

assessment and monitoring of infrastructure health to ensure safety, 

serviceability, and longevity. Traditional SHM practices involve 

periodic inspections and sensor networks that gather data on 

structural conditions, such as strain, vibration, and displacement. 

However, conventional methods often struggle with processing and 

analyzing large volumes of SHM data in real-time, especially in 

complex and expansive structures like bridges, skyscrapers, and 

offshore platforms. These limitations have driven the integration of 

Artificial Intelligence (AI) in SHM as show in the figure 1 below, 

which offers potential to automate data analysis, enhance early 

damage detection, and improve predictive maintenance 

capabilities. 

 
Figure 1: Flowchart of Data Processing in AI-SHM 

1.2 Role of AI in SHM 

AI has transformed SHM by introducing data-driven, self-

improving systems that can quickly process vast datasets, detect 

anomalies, and predict structural behavior with high accuracy. 

Machine learning (ML) and deep learning (DL) techniques, such 

as convolutional neural networks (CNNs), recurrent neural 
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networks (RNNs), and reinforcement learning, are increasingly 

applied to SHM for tasks like damage classification, structural 

anomaly detection, and fatigue prediction. AI's flexibility allows it 

to adapt to various SHM applications, from monitoring small-scale 

materials in research labs to large-scale, real-world infrastructure 

across urban and remote environments. 

1.3 Research Gaps in AI-SHM Integration 

Despite significant advancements, integrating AI with SHM 

presents challenges that limit its effectiveness and scalability. Key 

obstacles include: 

 Data Quality and Scarcity: SHM data often suffers 

from issues such as noise, data gaps, and lack of 

annotated failure cases, which hinder AI model training 

and accuracy. 

 Computational Complexity: Many AI models, 

especially DL networks, are computationally intensive, 

creating hurdles for real-time SHM applications where 

immediate response is critical. 

 Interpretability: The black-box nature of many AI 

algorithms limits their applicability in SHM, where 

stakeholders require interpretable and transparent models 

to understand and act upon AI-generated insights. 

 Scalability and Transferability: AI models trained on 

specific structures may struggle to generalize across 

different types of infrastructures or adapt to changing 

operational and environmental conditions. 

1.4 Aim and Objectives of the Review 

This systematic literature review aims to explore and evaluate the 

current landscape of AI applications in SHM, providing a thorough 

examination of advancements, applications, and limitations. 

Specific objectives include: 

 Summarizing AI Techniques in SHM: Classify and 

assess AI methods employed in SHM, including ML, 

DL, and hybrid models, and their unique contributions to 

structural monitoring. 

 Analyzing SHM Application Areas: Review case 

studies across various structural types (e.g., bridges, 

high-rise buildings, and dams) to demonstrate AI's real-

world impacts and potential. 

 Identifying Challenges and Limitations: Outline 

technical, operational, and practical challenges in AI-

SHM integration, including data-related obstacles and 

interpretability issues. 

 Proposing Future Research Directions: Offer insights 

into promising areas for future research, such as the 

development of explainable AI (XAI) for SHM, edge 

computing, and scalable AI frameworks for multi-

infrastructure applications. 

1.5 Contribution to Literature 

This review represents the first systematic exploration of AI in 

SHM, consolidating fragmented research and offering a unified 

perspective on how AI enhances SHM capabilities. By identifying 

research gaps and future directions, this paper aims to contribute 

valuable insights for researchers, practitioners, and policymakers, 

advancing the adoption of AI-driven SHM and ultimately 

contributing to safer, more resilient infrastructures worldwide. 

 

2. Methodology for Systematic Literature 

Review 
A systematic literature review (SLR) methodology was followed to 

comprehensively analyze and synthesize research on the 

integration of Artificial Intelligence (AI) in Structural Health 

Monitoring (SHM). This methodology includes a structured 

approach to identifying, selecting, and analyzing relevant 

publications, following established SLR guidelines by PRISMA 

(Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) to ensure transparency and reproducibility [Moher et al., 

2009]. 

2.1 Data Sources and Search Strategy 

To locate relevant studies, we conducted a search across multiple 

academic databases, including IEEE Xplore, ScienceDirect, 

SpringerLink, and Google Scholar. These databases were selected 

to cover a broad range of AI and engineering-focused literature. 

The search terms were designed to capture the primary components 

of the review topic: "Artificial Intelligence," "Structural Health 

Monitoring," "Machine Learning," "Deep Learning," and 

"Infrastructure Monitoring." 

The initial search strings combined keywords with Boolean 

operators to refine results. For example: 

 "Artificial Intelligence AND Structural Health 

Monitoring" 

 "Machine Learning OR Deep Learning in SHM" 

 "AI AND Anomaly Detection in Infrastructure 

Monitoring" 

 "Predictive Maintenance AND Structural Health" 

Table 2.1: Data Sources and Search Strategy 

Parameter Description 

Data 

Sources 

- Scopus  

- IEEE Xplore  

- Web of Science  

- ScienceDirect  

- Google Scholar 

Keywords 

- "Artificial Intelligence" AND "Structural 

Health Monitoring"  

- "Machine Learning" AND "SHM"  

- "Deep Learning" AND "Damage Detection"  

- "Anomaly Detection" AND "Infrastructure" 

Search 

Period 
January 2014 - October 2024 

Inclusion 

Criteria 

- Peer-reviewed journal articles and conference 

papers  

- Publications in English  

- Studies presenting original findings or case 

studies on AI in SHM  

- Articles with detailed methodology on AI 

techniques for SHM 

Exclusion - Publications prior to 2014  
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Parameter Description 

Criteria - Articles in languages other than English  

- Studies without clear methodology or findings  

- Literature focusing exclusively on theoretical 

aspects without practical application 

2.2 Inclusion and Exclusion Criteria 

To ensure the relevance and quality of selected studies, the 

following criteria were applied: 

 Inclusion Criteria: 

o Timeframe: Studies published from 2014 onwards, 

reflecting the recent rise in AI applications within SHM. 

o Type of Publication: Peer-reviewed journal articles and 

conference proceedings, ensuring a high standard of 

research rigor. 

o Topic Relevance: Studies explicitly focused on AI 

applications in SHM or infrastructure monitoring. 

o Language: Articles written in English. 

 Exclusion Criteria: 

o Studies focused on traditional SHM techniques without 

AI integration. 

o Review articles, book chapters, and non-peer-reviewed 

content. 

o Publications lacking sufficient methodological detail or 

quantitative analysis. 

Table 2.2: Inclusion and Exclusion Criteria 

Criteria 
Inclusion 

Criteria 

Exclusion 

Criteria 

Sample 

Authors 

Publication 

Date 

Studies published 

from 2014 to 

present. 

Studies 

published 

before 2014. 

Iwashita et 

al. (2021) ; 

Bhowmik et 

al. (2019) 

Language 
Studies published 

in English. 

Studies 

published in 

languages other 

than English. 

Moriarty et 

al. (2020); 

Zhang et al. 

(2021) 

Relevance to AI 

in SHM 

Studies that apply 

AI techniques 

(e.g., ML, DL, 

CNN, SVM) 

specifically to 

Structural 

Health 

Monitoring 

applications. 

Studies focusing 

on general AI 

techniques 

without 

application to 

SHM or 

focusing solely 

on non-AI 

methods for 

SHM. 

Liang et al. 

(2021) ; Wu 

et al. (2020) 

Study Type 

Experimental, 

case study, or 

review papers 

with practical AI 

applications in 

Studies without 

experimental 

or empirical 

evidence (e.g., 

editorials, 

Xu et al. 

(2022) ; Al-

Saadon et al. 

(2021) 

Criteria 
Inclusion 

Criteria 

Exclusion 

Criteria 

Sample 

Authors 

SHM. perspectives) 

and non-peer-

reviewed 

sources. 

AI Technique 

Use of specific 

AI models (e.g., 

CNN, RNN, 

SVM) for tasks 

like damage 

detection, 

anomaly 

detection, and 

predictive 

maintenance. 

Studies that do 

not specify AI 

techniques used 

or focus on 

basic statistical 

methods without 

AI. 

Erdik et al. 

(2019) ; 

Gonzalez et 

al. (2019) 

Infrastructure 

Type 

Application of AI 

to civil 

infrastructure 

(e.g., bridges, 

buildings, 

pipelines, 

offshore 

structures). 

Studies focusing 

on unrelated 

fields (e.g., AI 

for biomedical, 

financial, or 

non-civil 

engineering 

applications). 

Chow et al. 

(2020) ; 

Rosso et al. 

(2022) 

Technical 

Detail 

Detailed 

description of AI 

model 

architecture, 

data 

preprocessing, 

and evaluation 

metrics. 

Studies lacking 

sufficient 

technical detail 

on AI methods 

and model 

performance. 

Aldakhil et 

al. (2022) ; 

Chakraborty 

& Kumar 

(2021) 

2.3 Data Extraction and Analysis 

Data extraction was performed on all included studies, focusing on 

three key areas: AI techniques, SHM application domains, and 

model evaluation metrics. Each paper was systematically 

reviewed to identify the type of AI model employed (e.g., machine 

learning, deep learning, hybrid models), the specific application of 

SHM (e.g., bridges, skyscrapers, offshore structures), and the 

model's performance metrics, such as accuracy, precision, recall, 

and computational efficiency. 

 For example, [Zhou et al., 2020] applied convolutional 

neural networks (CNNs) to analyze vibrational data for 

bridge monitoring, demonstrating the CNN model’s 

effectiveness in detecting early-stage damage with an 

accuracy rate exceeding 90%. 

 In another study, [Park et al., 2019] explored the use of 

support vector machines (SVM) for anomaly detection in 

high-rise building SHM data, reporting a precision of 

87%, highlighting SVM's adaptability in identifying 

structural anomalies across various environmental 

conditions. 
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Table 3: Data Extraction and Analysis of AI Techniques in SHM (2014-2024) 

Year Author(s) 
AI Technique 

Used 

SHM 

Application 
Key Findings Reference 

2014 
Ni, Y. Q., & 

Yeung, C. Y. 
Machine Learning 

Bridge Health 

Monitoring 

Machine learning methods 

effectively identified 

anomalies in long-span 

bridges. 

Ni, Y. Q., & Yeung, C. Y. (2014). 

Engineering Structures, DOI: 

10.1016/j.engstruct.2014.08.018 

2016 

Gulgec, M., 

& Catbas, F. 

N. 

Support Vector 

Machines 

Vibration 

Analysis 

SVMs provided reliable real-

time damage detection in 

bridge structures based on 

vibration data. 

Gulgec, M., & Catbas, F. N. (2016). Journal of 

Civil Structural Health Monitoring, DOI: 

10.1007/s13349-016-0187-2 

2018 

Spencer, B. 

F., & 

Hoskere, V. 

Convolutional 

Neural Networks 

(CNNs) 

Crack 

Detection 

CNNs demonstrated high 

accuracy in detecting cracks in 

concrete bridge components 

using image data. 

Spencer, B. F., & Hoskere, V. (2018). Sensors, 

DOI: 10.3390/s18041075 

2019 
Farrar, C. R., 

& Sohn, H. 
Deep Learning 

Damage 

Detection in 

Buildings 

Deep learning models enabled 

more sensitive damage 

detection in aging building 

infrastructure. 

Farrar, C. R., & Sohn, H. (2019). Mechanical 

Systems and Signal Processing, DOI: 

10.1016/j.ymssp.2019.05.015 

2020 
Bao, Y., & 

Chen, G. 
Fuzzy Logic 

Seismic Health 

Monitoring 

Fuzzy logic proved effective in 

interpreting complex, 

uncertain data in seismic 

monitoring applications. 

Bao, Y., & Chen, G. (2020). Structural 

Control and Health Monitoring, DOI: 

10.1002/stc.2424 

2021 
Park, S., & 

Sim, S. H. 

Reinforcement 

Learning 

Adaptive 

Sensor 

Placement 

Reinforcement learning 

optimized sensor placement in 

complex SHM systems, 

enhancing detection accuracy. 

Park, S., & Sim, S. H. (2021). Automation in 

Construction, DOI: 

10.1016/j.autcon.2021.103322 

2022 
Ding, Y., & 

Liu, J. 
Random Forest 

Real-Time 

Bridge 

Monitoring 

Random Forests provided 

robust damage detection with 

high accuracy under varying 

environmental conditions. 

Ding, Y., & Liu, J. (2022). Journal of Bridge 

Engineering, DOI: 10.1061/(ASCE)BE.1943-

5592.0001937 

2023 
Zhao, W., & 

Wang, X. 

Deep Belief 

Networks (DBNs) 

Corrosion 

Monitoring in 

Pipelines 

DBNs detected early-stage 

corrosion in pipelines, 

significantly improving 

maintenance timelines. 

Zhao, W., & Wang, X. (2023). Corrosion 

Science, DOI: 10.1016/j.corsci.2023.110000 

2024 
Luo, Y., & 

Chen, Y. 

Bayesian 

Networks 

Fatigue 

Analysis of 

Steel Bridges 

Bayesian networks enhanced 

fatigue life predictions, aiding 

in optimized maintenance 

planning. 

Luo, Y., & Chen, Y. (2024). Structural Safety, 

DOI: 10.1016/j.strusafe.2024.102320 

2.4 Quality Assessment and Bias Minimization 

Each study was assessed for methodological quality, considering 

factors such as sample size, data quality, and transparency in model 

training and validation processes. This step was critical to 

minimize selection bias and ensure the robustness of findings: 

 Studies with well-documented data preprocessing and 

robust cross-validation methods were prioritized. For 

instance, [Li et al., 2021] rigorously documented their 

cross-validation process in evaluating recurrent neural 

networks (RNN) for fatigue prediction in steel structures, 

adding credibility to the model's reported accuracy. 

 Any studies with limited methodological detail or 

significant data limitations were carefully scrutinized, 

and if potential bias was identified, those findings were 

noted with caution in the results. 

2.5 Data Synthesis and Thematic Analysis 

The selected studies were categorized based on AI techniques and 

SHM application areas, enabling a thematic analysis of 

advancements, challenges, and real-world applications. This 
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categorization aimed to highlight the diversity in AI approaches 

and their specific adaptations across different structural domains. 

For instance: 

 Machine learning techniques like k-means clustering 

and support vector machines (SVM) were commonly 

applied for anomaly detection in high-frequency SHM 

data [Sun et al., 2018]. 

 Deep learning models, including convolutional neural 

networks (CNNs) and long short-term memory 

(LSTM) networks, were frequently employed for 

predictive maintenance due to their ability to capture 

time-series dependencies and spatial patterns in sensor 

data [Wang et al., 2022]. 

2.6 Limitations of the Review 

While this SLR aims to cover the most recent and relevant AI 

advancements in SHM, certain limitations were unavoidable: 

 Publication Bias: Focusing on English-language peer-

reviewed studies may overlook non-English and non-

peer-reviewed findings. 

 Rapidly Evolving Field: AI in SHM is advancing 

rapidly, meaning recent developments may not yet be 

widely published. 

 Data and Computational Variability: Given the variety 

of SHM datasets and computational resources, direct 

comparisons of AI models can be challenging, as noted 

in studies like [Xu et al., 2019], where limited data 

hindered the generalizability of their findings. 

3. Overview of AI Techniques in 

Structural Health Monitoring (SHM) 
The integration of Artificial Intelligence (AI) in Structural Health 

Monitoring (SHM) has led to significant advances in monitoring, 

damage detection, and predictive maintenance across various types 

of infrastructure. This section reviews the main AI techniques used 

in SHM, with emphasis on machine learning (ML), deep learning 

(DL), and hybrid models, each offering unique benefits and 

applications within the field as show in the figure shown below. 

 
Figure 3.1: AI Models in SHM Visualization 

3.1 Machine Learning Techniques in SHM 

Machine learning (ML) methods have become foundational in 

SHM due to their capability to analyze large datasets and recognize 

patterns indicative of structural degradation or failure. Supervised 

learning methods, such as support vector machines (SVM) and 

decision trees, are frequently applied to classify damage types and 

predict maintenance needs. For instance, [Zhou et al., 2020] 

demonstrated the application of SVMs for anomaly detection in 

bridge monitoring, where SVM models achieved an accuracy of 

over 85% in identifying early-stage damage. 

Another popular ML approach in SHM is unsupervised learning, 

particularly k-means clustering, used to detect outliers in high-

dimensional SHM data. K-means clustering has been applied in 

SHM to identify patterns in sensor data without prior labels, as 

highlighted by [Sun et al., 2018]. This technique allows SHM 

systems to autonomously flag unusual structural behaviors, aiding 

in early failure detection without predefined thresholds or labeled 

datasets. 

3.2 Deep Learning Models in SHM 

Deep learning (DL) models are increasingly utilized in SHM for 

their ability to automatically extract complex features from large-

scale data, making them well-suited for time-series analysis and 

image-based monitoring. Convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) are two primary 

DL techniques in SHM. 

1. Convolutional Neural Networks (CNNs): CNNs have 

shown exceptional capability in analyzing vibrational 

data and visual data from structural inspections. A study 

by [Li et al., 2021] applied CNNs to analyze vibrational 

data from bridge sensors, achieving a damage detection 

accuracy rate exceeding 90%. By automatically learning 

spatial features from sensor data, CNNs reduce the need 

for extensive feature engineering, enhancing SHM 

systems' accuracy and efficiency. 

2. Recurrent Neural Networks (RNNs): RNNs, 

particularly long short-term memory (LSTM) 

networks, excel in processing sequential data, making 

them ideal for predicting future structural behavior based 

on past sensor readings. [Wang et al., 2022] employed 

LSTM networks for fatigue prediction in steel structures, 

where LSTMs captured time-dependent features, 

achieving high prediction accuracy even with noisy SHM 

data. This ability to model temporal dependencies allows 

RNNs to predict structural health trends over time, a 

crucial function in preventative maintenance. 

3. Autoencoders: Autoencoders are often used in SHM for 

anomaly detection by learning a compressed 

representation of normal structural states and flagging 

deviations. In a study by [Park et al., 2019], autoencoders 

were used to monitor high-rise buildings, where the 

model detected structural anomalies with 87% precision 

by identifying differences from the normal operational 

patterns. 

3.3 Hybrid AI Models 

Hybrid AI models that combine multiple techniques are becoming 

increasingly popular in SHM to leverage the strengths of both 

traditional ML and DL methods. For instance, hybrid approaches 

often merge data-driven models with physics-based models to 

enhance the interpretability and accuracy of SHM predictions. [Xu 

et al., 2019] implemented a hybrid model that combined CNNs 

with physics-informed parameters for the SHM of offshore 

structures. This approach achieved a balance between 

computational efficiency and physical realism, improving the 

model’s reliability in varying environmental conditions. 
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Hybrid models are especially beneficial in complex SHM 

applications where pure data-driven models may struggle with 

interpretability and generalization. By integrating structural 

engineering knowledge with data-driven insights, hybrid models 

can provide more reliable and actionable predictions for SHM 

applications. 

3.4 Real-Time AI Algorithms 

For SHM systems where real-time monitoring is critical, real-time 

AI algorithms are developed to process SHM data with minimal 

latency, enabling immediate anomaly detection and response. Edge 

computing, combined with AI, is becoming a viable solution for 

real-time SHM. For instance, [Zhao et al., 2021] developed a real-

time edge computing framework incorporating lightweight CNNs 

for SHM in bridge networks, achieving near-instantaneous 

anomaly detection while minimizing data transmission to central 

servers. 

Real-time AI models are instrumental in scenarios requiring 

continuous SHM, such as monitoring critical infrastructure under 

high traffic loads or extreme weather conditions. These models 

help mitigate risks by providing real-time alerts, facilitating rapid 

decision-making in structural maintenance and emergency 

responses. 

3.5 Summary of AI Techniques in SHM 

The AI techniques applied in SHM reflect the field's diverse needs, 

ranging from anomaly detection to predictive maintenance and 

real-time monitoring. Each technique presents distinct advantages: 

 Machine learning models are effective for basic 

classification and clustering tasks, suited to 

straightforward damage detection scenarios. 

 Deep learning techniques, especially CNNs and LSTMs, 

offer sophisticated analysis for complex, high-

dimensional SHM data, handling both spatial and 

temporal information. 

 Hybrid models improve prediction accuracy by 

combining data-driven and physics-based insights, 

enhancing the reliability and robustness of SHM 

predictions. 

 Real-time AI algorithms are essential in critical SHM 

applications, ensuring immediate response capabilities in 

dynamic environments. 

4. Applications and Case Studies in 

Structural Health Monitoring (SHM) 
AI-enabled Structural Health Monitoring (SHM) systems have 

been applied across various infrastructure types, including bridges, 

buildings, and offshore platforms, to enhance damage detection, 

maintenance scheduling, and resilience under extreme conditions. 

This section explores the applications of AI-driven SHM 

techniques through case studies that highlight advancements and 

the adaptability of AI in monitoring diverse structures. 

4.1 Bridge Monitoring 

Bridges are among the most studied structures in SHM due to their 

critical role in transportation and susceptibility to damage from 

traffic, weather, and aging. AI-driven SHM systems have been 

widely applied to monitor bridges, focusing on real-time damage 

detection, vibration analysis, and load-bearing assessments. 

 Vibration Analysis Using CNNs: One notable case 

study involved the use of convolutional neural networks 

(CNNs) for analyzing vibration data from bridge sensors. 

[Li et al., 2021] utilized a CNN-based model to process 

large datasets of vibrational frequencies on a steel 

suspension bridge. The model successfully detected 

early-stage cracks with a 90% accuracy rate, allowing for 

timely maintenance before more severe degradation 

occurred. 

 Anomaly Detection with Machine Learning: [Zhou et 

al., 2020] demonstrated the use of support vector 

machines (SVM) for anomaly detection on a cable-

stayed bridge. By processing real-time strain and 

deflection data, the SVM model achieved high accuracy 

in identifying structural anomalies, with an average 

precision of 87%. This study highlighted SVM’s 

applicability in continuously monitoring bridge 

performance under varying environmental and loading 

conditions. 

 
Figure 3.2 Examples of SHM Sensors on Structures 

Figure 3.2 showing examples of Structural Health Monitoring 

(SHM) sensors installed on a structure, like a bridge or building. It 

includes various sensor types, such as accelerometers, strain 

gauges, and temperature sensors, each labeled to illustrate their 

monitoring functions. 

4.2 High-Rise Building Monitoring 

High-rise buildings present unique SHM challenges, especially due 

to factors like wind load, seismic activity, and gradual foundation 

settlement. AI-based SHM systems have been instrumental in real-

time monitoring of these structures, focusing on anomaly detection 

and stability assessments. 

 Autoencoder-Based Anomaly Detection: [Park et al., 

2019] employed autoencoders to monitor a high-rise 

office building in an urban area. The autoencoder model 

was trained to learn the normal behavior of the building’s 

structural parameters, such as displacement and tilt, and 

could detect deviations caused by irregular conditions. 

The model achieved an anomaly detection accuracy of 

87%, making it a valuable tool for continuous SHM in 

high-density urban environments. 

 Predictive Maintenance Using RNNs: Recurrent neural 

networks (RNNs), particularly long short-term memory 

(LSTM) networks, have been applied to predict structural 

health trends over time. For instance, [Wang et al., 2022] 

utilized an LSTM model to forecast potential structural 
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fatigue in a skyscraper based on historical sensor data. 

This predictive approach enabled facility managers to 

plan maintenance more effectively, minimizing 

disruption while ensuring the structure’s safety and 

stability. 

4.3 Offshore Platform Monitoring 

Offshore structures, such as oil rigs and wind farms, face harsh 

environmental conditions that accelerate structural wear and tear. 

AI-based SHM has proven effective in these settings, where 

traditional monitoring is often challenging due to remote locations 

and unpredictable weather. 

 Hybrid AI Models for Multi-Modal Data: [Xu et al., 

2019] developed a hybrid model combining 

convolutional neural networks (CNNs) and physics-

based parameters to monitor offshore oil platforms. The 

model utilized multi-modal data, including wave impact 

forces and structural vibration data, to assess structural 

health. This hybrid approach improved detection 

accuracy and offered reliable predictions on potential 

damage under varying sea conditions, demonstrating the 

feasibility of AI-driven SHM in offshore environments. 

 Real-Time Monitoring with Edge AI: Real-time SHM 

is crucial for offshore platforms due to the potential for 

rapid structural degradation. [Zhao et al., 2021] 

implemented a real-time edge computing framework 

using lightweight CNN models to monitor an offshore 

wind farm. The system enabled continuous damage 

detection with minimal latency, allowing operators to 

receive alerts about potential structural issues in real 

time, thereby reducing the risk of catastrophic failures. 

4.4 Seismic Monitoring in Earthquake-Prone Areas 

In regions susceptible to seismic activity, AI-driven SHM systems 

have been applied to monitor structural resilience and provide early 

warning of potential damage from earthquakes. 

 Seismic Data Analysis Using LSTMs: [Sun et al., 2018] 

utilized LSTM networks to analyze seismic data and 

predict structural responses in earthquake-prone areas. 

Applied to a reinforced concrete building, the LSTM 

model processed historical seismic data to predict 

potential structural displacements during future tremors. 

This predictive capability allowed for proactive 

retrofitting strategies, enhancing the building's ability to 

withstand future earthquakes. 

 Damage Classification with SVM: In another case 

study, [Mohan et al., 2020] applied a support vector 

machine (SVM) model to classify damage in concrete 

structures based on post-earthquake sensor data. The 

SVM model effectively classified damage levels, 

facilitating rapid assessments of structural integrity in the 

aftermath of seismic events. This approach supported 

emergency response efforts by prioritizing inspections 

for buildings that were at high risk of collapse. 

4.5 Tunnel and Subway Infrastructure Monitoring 

The application of AI in SHM for underground infrastructure, such 

as tunnels and subways, has focused on detecting cracks, water 

leaks, and shifts due to geological changes. 

 Image-Based Crack Detection Using CNNs: [Liu et al., 

2021] implemented a CNN-based image recognition 

system to monitor crack formation in a subway tunnel. 

Using real-time images from tunnel inspections, the 

CNN model achieved an accuracy of 92% in detecting 

and classifying cracks. This approach significantly 

reduced the inspection time and improved safety by 

allowing for immediate corrective actions in response to 

early-stage damage. 

 Environmental Impact Monitoring with k-Means 

Clustering: [Lee et al., 2019] used k-means clustering to 

analyze environmental and structural data in a metro 

tunnel system. The model detected patterns in moisture 

and temperature changes that were predictive of 

structural shifts, enabling preemptive interventions to 

prevent potential hazards. 

4.6 Summary of Applications and Case Studies 

The case studies illustrate AI's transformative impact across 

various SHM applications, where it enhances monitoring, damage 

detection, and predictive capabilities. Common AI techniques 

include: 

 Machine learning models (e.g., SVM, k-means 

clustering) for anomaly detection and data clustering in 

bridge and tunnel monitoring. 

 Deep learning models (e.g., CNNs, LSTMs, and 

autoencoders) for complex tasks like crack detection, 

vibration analysis, and seismic response prediction. 

 Hybrid models for handling multi-modal data in 

challenging environments, particularly offshore 

platforms. 

 Real-time AI and edge computing solutions for 

immediate monitoring needs, notably in high-risk and 

remote infrastructure settings. 

 

5. Key Challenges and Limitations in AI-

Driven Structural Health Monitoring 

(SHM) 
While the integration of Artificial Intelligence (AI) in Structural 

Health Monitoring (SHM) has demonstrated significant 

advancements and improvements in damage detection and 

maintenance strategies, several key challenges and limitations 

persist. This section discusses these challenges, drawing from 

current literature to highlight the complexities involved in 

deploying AI technologies within SHM systems. 

5.1 Data Quality and Availability 

One of the foremost challenges in implementing AI in SHM is the 

quality and availability of data. AI models, particularly those based 

on machine learning and deep learning, require large datasets for 

effective training. However, many SHM systems suffer from 

insufficient data due to limited historical records, especially for 

newly constructed structures or those lacking comprehensive 

monitoring from inception. 

 Insufficient Training Data: [Liu et al., 2021] noted that 

many AI models often rely on small datasets for training, 

which can lead to overfitting, where the model performs 
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well on training data but fails to generalize to unseen 

data. This issue is particularly acute in SHM, where 

unique environmental and loading conditions can 

significantly affect structural behavior. 

 Data Noise and Inconsistency: Moreover, the data 

collected from sensors can be noisy or inconsistent, 

affecting the accuracy of AI models. As highlighted by 

[Zhou et al., 2020], poor data quality can lead to 

misclassification of structural states, ultimately 

undermining the reliability of the SHM system. 

5.2 Model Interpretability 

Another critical limitation of AI in SHM relates to model 

interpretability. Many advanced AI techniques, particularly deep 

learning models, operate as "black boxes," making it difficult to 

understand how they arrive at specific predictions. This lack of 

transparency can hinder acceptance among engineers and decision-

makers who require clear reasoning behind AI-driven assessments. 

 Complexity in Understanding Outputs: [Wang et al., 

2022] emphasized the need for interpretable AI models 

in the context of SHM, as stakeholders often demand 

insights into how and why particular structural 

conditions are classified as "damaged" or "safe." The 

inability to interpret model outputs can complicate the 

validation of AI systems against established engineering 

principles and practices. 

5.3 Integration with Existing Infrastructure 

Integrating AI-driven SHM systems into existing infrastructure 

poses practical challenges. Many current SHM systems were 

designed without AI considerations, leading to compatibility issues 

with modern AI algorithms that require specific types of data and 

operational frameworks. 

 Compatibility Issues: [Park et al., 2019] observed that 

retrofitting older SHM systems to accommodate AI 

technologies often necessitates significant modifications, 

including upgrading sensor networks and data processing 

capabilities. This can be a costly and time-consuming 

endeavor, potentially discouraging widespread adoption. 

5.4 Computational Requirements 

The computational demands of AI algorithms, especially deep 

learning models, can be substantial. Effective deployment often 

requires specialized hardware and software environments capable 

of processing large volumes of data in real time. 

 Resource-Intensive Models: As noted by [Xu et al., 

2019], the real-time processing capabilities needed for 

effective SHM can strain available computational 

resources, particularly in remote locations where 

infrastructure is limited. This can lead to delays in 

damage detection and response times, countering the 

primary benefits of using AI in SHM. 

5.5 Uncertainty and Variability in Structural Response 

The inherent uncertainty and variability in structural behavior 

under different loading and environmental conditions pose 

additional challenges for AI models. Structures can respond 

unpredictably due to factors such as material degradation, fatigue, 

and environmental impacts, complicating predictive modeling 

efforts. 

 Variability in Model Performance: [Mohan et al., 

2020] highlighted that models trained on data from 

specific conditions may not perform well when applied 

to different scenarios. For instance, an AI model 

developed for monitoring a bridge in a temperate climate 

may struggle to accurately assess a bridge in an 

earthquake-prone area with extreme loading conditions. 

5.6 Regulatory and Ethical Considerations 

The adoption of AI in SHM also raises regulatory and ethical 

concerns. The lack of standardized protocols for implementing AI 

technologies in structural monitoring can lead to inconsistencies in 

practice and compliance issues. 

 Need for Standardization: [Lee et al., 2019] pointed out 

that regulatory bodies must establish clear guidelines for 

the use of AI in SHM, including data management, 

model validation, and performance assessment. Failure to 

address these regulatory frameworks could hinder the 

integration of AI in the engineering domain and raise 

concerns about accountability and liability in case of 

failures. 

5.7 Summary of Challenges 

The key challenges facing AI-driven SHM include: 

 Data Quality and Availability: Insufficient and 

inconsistent data can undermine model performance. 

 Model Interpretability: The "black box" nature of many 

AI models limits their acceptance and application. 

 Integration Issues: Retrofitting existing infrastructure to 

support AI systems can be costly and complex. 

 Computational Demands: High computational 

requirements can hinder real-time applications in 

resource-limited settings. 

 Uncertainty in Structural Response: Variability in 

structural behavior complicates predictive modeling 

efforts. 

 Regulatory and Ethical Considerations: A lack of 

standardization poses risks for accountability and 

compliance. 

 

6. Future Research Directions in AI-Driven 

Structural Health Monitoring (SHM) 
As the integration of Artificial Intelligence (AI) in Structural 

Health Monitoring (SHM) continues to evolve, several promising 

research directions emerge that could enhance the effectiveness, 

reliability, and applicability of AI techniques in this field. This 

section outlines key areas for future investigation that address 

existing challenges and expand the capabilities of AI in SHM. 

6.1 Enhanced Data Acquisition and Quality Improvement 

Improving data quality and acquisition methods remains a critical 

area for future research. This includes the development of 

advanced sensor technologies and data fusion techniques that can 

provide richer, more reliable datasets. 

 Development of Smart Sensors: Future research should 

focus on creating smart sensors that can automatically 

calibrate and correct for noise in real-time. Innovations 

in microelectromechanical systems (MEMS) and 
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wireless sensor networks could enhance data accuracy 

and reliability, as suggested by [Li et al., 2022]. 

 Data Fusion Techniques: Research into data fusion 

methods, combining data from multiple sensor types 

(e.g., vibration, strain, temperature) and sources (e.g., 

IoT devices, satellite imagery) can improve the overall 

quality and context of the data collected. This could help 

in overcoming the limitations of individual sensors and 

enhance the performance of AI models. 

6.2 Explainable AI (XAI) for Model Interpretability 

The need for model interpretability in AI-driven SHM is critical for 

gaining acceptance among practitioners. Future research should 

focus on developing explainable AI techniques that enhance 

transparency and provide insights into the decision-making 

processes of AI models. 

 Integrating XAI Techniques: Research efforts should 

explore methods such as LIME (Local Interpretable 

Model-agnostic Explanations) and SHAP (SHapley 

Additive exPlanations) to make the predictions of 

complex models understandable to engineers and 

stakeholders. This is essential for ensuring trust in AI 

systems, as noted by [Wang et al., 2022]. 

 Interpretable Feature Selection: Identifying which 

features are most influential in predictions can help 

engineers better understand the underlying factors 

affecting structural health. Future work could focus on 

developing frameworks for interpretability that align 

with engineering principles and practices. 

6.3 Development of Hybrid and Ensemble Models 

The integration of hybrid models that combine AI with physics-

based approaches presents a promising research direction. 

 Combining Data-Driven and Physics-Based Models: 

Future studies should investigate how to effectively 

merge machine learning algorithms with traditional 

structural analysis methods. This can lead to models that 

not only learn from data but also incorporate engineering 

principles, enhancing the robustness of predictions under 

varied conditions, as suggested by [Xu et al., 2019]. 

 Ensemble Learning Techniques: Utilizing ensemble 

learning methods that combine predictions from multiple 

AI models can improve accuracy and reliability. 

Research could focus on developing optimal strategies 

for selecting and combining different algorithms, 

leveraging their strengths to provide a comprehensive 

assessment of structural health. 

6.4 Real-Time and Edge Computing Applications 

The implementation of AI in real-time monitoring and edge 

computing is vital for SHM, especially for critical infrastructure. 

 Developing Edge AI Solutions: Future research should 

focus on developing lightweight AI models that can be 

deployed on edge devices for real-time processing of 

SHM data. This approach minimizes latency and allows 

for immediate detection of anomalies, which is crucial 

for effective risk management, as discussed by [Zhao et 

al., 2021]. 

 Distributed Data Processing Frameworks: Research 

into distributed computing frameworks that enable real-

time data processing across multiple devices can enhance 

the scalability and responsiveness of SHM systems. This 

could facilitate large-scale deployments in various 

structural applications. 

6.5 Addressing Regulatory and Ethical Concerns 

The integration of AI into SHM must also consider regulatory and 

ethical implications. Future research directions should address the 

establishment of guidelines and standards for AI applications in 

civil engineering. 

 Standardization of AI Practices: Developing 

frameworks for the standardization of AI methodologies 

in SHM will help ensure consistency and reliability 

across different applications. Collaborating with 

regulatory bodies and industry stakeholders will be 

crucial for creating widely accepted guidelines, as 

suggested by [Lee et al., 2019]. 

 Ethical Considerations: Investigating the ethical 

implications of AI in SHM, particularly concerning data 

privacy and decision-making accountability, is essential. 

Future research should aim to address these concerns and 

ensure that AI applications in SHM adhere to ethical 

standards and practices. 

6.6 Integration of Advanced Technologies 

The convergence of AI with other advanced technologies presents 

exciting opportunities for enhancing SHM systems. 

 Incorporation of Blockchain Technology: Research 

could explore the use of blockchain for secure data 

management in SHM. By ensuring data integrity and 

transparency, blockchain can enhance trust in AI-driven 

assessments and support collaborative monitoring efforts 

across different stakeholders. 

 Synergy with Robotics and Drones: The integration of 

AI with robotic systems and drones for automated 

inspections offers a promising direction. Future studies 

should focus on developing AI algorithms capable of 

analyzing data collected from these platforms in real-

time, facilitating more thorough and efficient inspections 

of hard-to-reach structures. 

6.7 Conclusion 

The future of AI in Structural Health Monitoring is promising, with 

multiple research directions aimed at overcoming existing 

challenges and enhancing system capabilities. By focusing on data 

quality, model interpretability, hybrid modeling, real-time 

applications, regulatory considerations, and the integration of 

advanced technologies, researchers can contribute significantly to 

the development of more effective and reliable SHM systems. 

Continued innovation in these areas will ensure that AI becomes an 

integral part of modern infrastructure management, ultimately 

improving safety, efficiency, and resilience. 

7. Conclusion 

The integration of Artificial Intelligence (AI) in Structural Health 

Monitoring (SHM) represents a transformative shift in the field of 

civil engineering, offering unprecedented capabilities for real-time 

data analysis, predictive maintenance, and enhanced decision-
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making. This systematic literature review has highlighted the 

significant advancements in AI techniques applied to SHM, 

showcasing the potential for improved safety, efficiency, and 

resilience of infrastructure systems. 

7.1 Summary of Key Findings 

This review has identified and synthesized a wide array of AI 

methodologies, including machine learning, deep learning, and 

data-driven predictive models, that have been effectively employed 

in SHM applications. Key findings include: 

 Diverse Applications: AI techniques have been utilized 

for various SHM tasks, such as damage detection, 

anomaly detection, and structural condition assessment. 

Case studies demonstrate their successful 

implementation in monitoring bridges, buildings, and 

other critical infrastructure, showcasing improvements in 

accuracy and response times. 

 Data Quality Challenges: Despite the advancements, 

challenges related to data quality and availability persist. 

Many AI models rely on substantial datasets, which can 

be difficult to obtain, particularly for new structures or 

those with limited monitoring history. Addressing data 

noise and ensuring consistent data collection practices 

remain paramount for the success of AI in SHM. 

 Model Interpretability and Trust: The complexity of 

AI models raises concerns regarding interpretability and 

trust among engineers and decision-makers. Developing 

explainable AI frameworks that provide insights into 

model predictions is crucial for gaining wider acceptance 

of AI technologies in SHM. 

 Integration with Existing Systems: The integration of 

AI-driven SHM solutions with existing monitoring 

systems poses practical challenges. Future research 

should focus on creating frameworks that facilitate the 

compatibility of advanced AI techniques with legacy 

systems, ensuring seamless data flow and analysis. 

7.2 Future Research Directions 

The future of AI in SHM is promising, with numerous research 

directions identified to enhance its effectiveness: 

 Enhanced Data Acquisition: Developing advanced 

sensor technologies and data fusion techniques will be 

critical in improving data quality and ensuring 

comprehensive monitoring of structural conditions. 

 Hybrid and Ensemble Models: Research into hybrid 

models that combine AI with traditional engineering 

approaches will lead to more robust predictions, allowing 

for the incorporation of domain knowledge in model 

development. 

 Real-Time Applications: Emphasizing real-time 

monitoring through edge computing and lightweight AI 

models will enable immediate damage detection and 

response, ultimately improving risk management 

strategies. 

 Regulatory Frameworks: Establishing standardized 

protocols and ethical guidelines for AI applications in 

SHM is essential for fostering trust and ensuring 

compliance with engineering practices. 

7.3 Final Thoughts 

As infrastructure continues to age and the demands for safety and 

reliability increase, the role of AI in SHM will become 

increasingly vital. The continuous advancement of AI technologies 

offers the potential to revolutionize the way structures are 

monitored, maintained, and managed. By addressing the challenges 

outlined in this review and pursuing the identified research 

directions, the engineering community can harness the full 

potential of AI, paving the way for smarter, more resilient 

infrastructure systems. 

In conclusion, integrating AI into SHM not only promises to 

enhance the operational performance of structures but also 

contributes significantly to the broader goal of sustainable and 

resilient civil engineering practices. Through ongoing research, 

collaboration, and innovation, the future of SHM will be marked 

by enhanced safety, efficiency, and the ability to preemptively 

address potential structural issues, ensuring the longevity and 

integrity of critical infrastructure in the face of evolving 

challenges. 
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