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Abstract 

The integration of Artificial Intelligence (AI) in Structural Health Monitoring 

(SHM) has garnered significant attention in recent years, driven by the need for 

enhanced safety, reliability, and efficiency in infrastructure management. This 

systematic review synthesizes the latest advancements in AI techniques applied 

to SHM, exploring various methodologies, including machine learning, deep 

learning, and data-driven approaches. We examine a wide range of 

applications, from real-time damage detection to predictive maintenance and 

anomaly detection in diverse structural types, including bridges, buildings, and 

offshore structures. Despite the promising developments, several challenges 

hinder the widespread adoption of AI in SHM, including data quality and 

quantity, interpretability of AI models, and integration with existing monitoring 

systems. We identify critical gaps in the current literature and propose future 

research directions that emphasize the need for robust algorithms, 

interdisciplinary collaboration, and the development of standardized protocols. 

This review serves as a comprehensive resource for researchers and 

practitioners aiming to advance the integration of AI in SHM, ultimately 

contributing to safer and more resilient infrastructure systems. 

Keywords: Artificial Intelligence, Structural Health Monitoring, Machine 

Learning, Deep Learning, Predictive Maintenance, Anomaly Detection, 

Infrastructure Management, Data-Driven Approaches, Challenges and 

Opportunities and Future Research Directions. 

 

ntroduction 

Structural Health Monitoring (SHM) has emerged as a critical field within structural engineering, 

focusing on the continuous assessment and monitoring of infrastructure health to ensure safety, 

serviceability, and longevity. Traditional SHM practices involve periodic inspections and sensor networks 

that gather data on structural conditions, such as strain, vibration, and displacement. However, conventional 

methods often struggle with processing and analyzing large volumes of SHM data in real-time, especially in 

complex and expansive structures like bridges, skyscrapers, and offshore platforms. These limitations have 

driven the integration of Artificial Intelligence (AI) in SHM as show in the figure 1 below, which offers 

potential to automate data analysis, enhance early damage detection, and improve predictive maintenance 

capabilities. 
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Figure 1: Flowchart of Data Processing in AI-SHM 

1.2 Role of AI in SHM 

AI has transformed SHM by introducing data-driven, self-improving systems that can quickly 

process vast datasets, detect anomalies, and predict structural behavior with high accuracy. Machine 

learning (ML) and deep learning (DL) techniques, such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and reinforcement learning, are increasingly applied to SHM for tasks 

like damage classification, structural anomaly detection, and fatigue prediction. AI's flexibility allows it to 

adapt to various SHM applications, from monitoring small-scale materials in research labs to large-scale, 

real-world infrastructure across urban and remote environments. 

1.3 Research Gaps in AI-SHM Integration 

Despite significant advancements, integrating AI with SHM presents challenges that limit its 

effectiveness and scalability. Key obstacles include: 

 Data Quality and Scarcity: SHM data often suffers from issues such as noise, data gaps, and lack of 

annotated failure cases, which hinder AI model training and accuracy. 

 Computational Complexity: Many AI models, especially DL networks, are computationally 

intensive, creating hurdles for real-time SHM applications where immediate response is critical. 

 Interpretability: The black-box nature of many AI algorithms limits their applicability in SHM, 

where stakeholders require interpretable and transparent models to understand and act upon AI-

generated insights. 

 Scalability and Transferability: AI models trained on specific structures may struggle to generalize 

across different types of infrastructures or adapt to changing operational and environmental 

conditions. 

1.4 Aim and Objectives of the Review 

This systematic literature review aims to explore and evaluate the current landscape of AI 

applications in SHM, providing a thorough examination of advancements, applications, and limitations. 

Specific objectives include: 
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 Summarizing AI Techniques in SHM: Classify and assess AI methods employed in SHM, 

including ML, DL, and hybrid models, and their unique contributions to structural monitoring. 

 Analyzing SHM Application Areas: Review case studies across various structural types (e.g., 

bridges, high-rise buildings, and dams) to demonstrate AI's real-world impacts and potential. 

 Identifying Challenges and Limitations: Outline technical, operational, and practical challenges in 

AI-SHM integration, including data-related obstacles and interpretability issues. 

 Proposing Future Research Directions: Offer insights into promising areas for future research, 

such as the development of explainable AI (XAI) for SHM, edge computing, and scalable AI 

frameworks for multi-infrastructure applications. 

1.5 Contribution to Literature 

This review represents the first systematic exploration of AI in SHM, consolidating fragmented 

research and offering a unified perspective on how AI enhances SHM capabilities. By identifying research 

gaps and future directions, this paper aims to contribute valuable insights for researchers, practitioners, and 

policymakers, advancing the adoption of AI-driven SHM and ultimately contributing to safer, more resilient 

infrastructures worldwide. 

 

2. Methodology for Systematic Literature Review 

A systematic literature review (SLR) methodology was followed to comprehensively analyze and 

synthesize research on the integration of Artificial Intelligence (AI) in Structural Health Monitoring (SHM). 

This methodology includes a structured approach to identifying, selecting, and analyzing relevant 

publications, following established SLR guidelines by PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) to ensure transparency and reproducibility [Moher et al., 2009]. 

2.1 Data Sources and Search Strategy 

To locate relevant studies, we conducted a search across multiple academic databases, including 

IEEE Xplore, ScienceDirect, SpringerLink, and Google Scholar. These databases were selected to cover a 

broad range of AI and engineering-focused literature. The search terms were designed to capture the primary 

components of the review topic: "Artificial Intelligence," "Structural Health Monitoring," "Machine 

Learning," "Deep Learning," and "Infrastructure Monitoring." 

The initial search strings combined keywords with Boolean operators to refine results. For example: 

 "Artificial Intelligence AND Structural Health Monitoring" 

 "Machine Learning OR Deep Learning in SHM" 

 "AI AND Anomaly Detection in Infrastructure Monitoring" 

 "Predictive Maintenance AND Structural Health" 

Table 2.1: Data Sources and Search Strategy 

Parameter Description 

Data Sources 

- Scopus  

- IEEE Xplore  

- Web of Science  

- ScienceDirect  

- Google Scholar 
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Parameter Description 

Keywords 

- "Artificial Intelligence" AND "Structural Health Monitoring"  

- "Machine Learning" AND "SHM"  

- "Deep Learning" AND "Damage Detection"  

- "Anomaly Detection" AND "Infrastructure" 

Search Period January 2014 - October 2024 

Inclusion 

Criteria 

- Peer-reviewed journal articles and conference papers  

- Publications in English  

- Studies presenting original findings or case studies on AI in SHM  

- Articles with detailed methodology on AI techniques for SHM 

Exclusion 

Criteria 

- Publications prior to 2014  

- Articles in languages other than English  

- Studies without clear methodology or findings  

- Literature focusing exclusively on theoretical aspects without practical 

application 

2.2 Inclusion and Exclusion Criteria 

To ensure the relevance and quality of selected studies, the following criteria were applied: 

 Inclusion Criteria: 

o Timeframe: Studies published from 2014 onwards, reflecting the recent rise in AI applications 

within SHM. 

o Type of Publication: Peer-reviewed journal articles and conference proceedings, ensuring a high 

standard of research rigor. 

o Topic Relevance: Studies explicitly focused on AI applications in SHM or infrastructure monitoring. 

o Language: Articles written in English. 

 Exclusion Criteria: 

o Studies focused on traditional SHM techniques without AI integration. 

o Review articles, book chapters, and non-peer-reviewed content. 

o Publications lacking sufficient methodological detail or quantitative analysis. 

Table 2.2: Inclusion and Exclusion Criteria 

Criteria Inclusion Criteria Exclusion Criteria Sample Authors 

Publication Date Studies published from 2014 to present. Studies published before 2014. 

Iwashita et al. (2021) 

; Bhowmik et al. 

(2019) 

Language Studies published in English. 
Studies published in languages other 

than English. 

Moriarty et al. 

(2020); Zhang et al. 

(2021) 

Relevance to AI in SHM 

Studies that apply AI techniques (e.g., 

ML, DL, CNN, SVM) specifically to 

Structural Health Monitoring 

Studies focusing on general AI 

techniques without application to 

SHM or focusing solely on non-AI 

Liang et al. (2021) ; 

Wu et al. (2020) 
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Criteria Inclusion Criteria Exclusion Criteria Sample Authors 

applications. methods for SHM. 

Study Type 

Experimental, case study, or review 

papers with practical AI applications in 

SHM. 

Studies without experimental or 

empirical evidence (e.g., editorials, 

perspectives) and non-peer-reviewed 

sources. 

Xu et al. (2022) ; Al-

Saadon et al. (2021) 

AI Technique 

Use of specific AI models (e.g., CNN, 

RNN, SVM) for tasks like damage 

detection, anomaly detection, and 

predictive maintenance. 

Studies that do not specify AI 

techniques used or focus on basic 

statistical methods without AI. 

Erdik et al. (2019) ; 

Gonzalez et al. 

(2019) 

Infrastructure Type 

Application of AI to civil infrastructure 

(e.g., bridges, buildings, pipelines, 

offshore structures). 

Studies focusing on unrelated fields 

(e.g., AI for biomedical, financial, 

or non-civil engineering 

applications). 

Chow et al. (2020) ; 

Rosso et al. (2022) 

Technical Detail 

Detailed description of AI model 

architecture, data preprocessing, and 

evaluation metrics. 

Studies lacking sufficient technical 

detail on AI methods and model 

performance. 

Aldakhil et al. 

(2022) ; Chakraborty 

& Kumar (2021) 

2.3 Data Extraction and Analysis 

Data extraction was performed on all included studies, focusing on three key areas: AI techniques, 

SHM application domains, and model evaluation metrics. Each paper was systematically reviewed to 

identify the type of AI model employed (e.g., machine learning, deep learning, hybrid models), the specific 

application of SHM (e.g., bridges, skyscrapers, offshore structures), and the model's performance metrics, 

such as accuracy, precision, recall, and computational efficiency. 

 For example, [Zhou et al., 2020] applied convolutional neural networks (CNNs) to analyze 

vibrational data for bridge monitoring, demonstrating the CNN model’s effectiveness in detecting 

early-stage damage with an accuracy rate exceeding 90%. 

 In another study, [Park et al., 2019] explored the use of support vector machines (SVM) for anomaly 

detection in high-rise building SHM data, reporting a precision of 87%, highlighting SVM's 

adaptability in identifying structural anomalies across various environmental conditions. 

Table 3: Data Extraction and Analysis of AI Techniques in SHM (2014-2024) 

Year Author(s) 
AI Technique 

Used 

SHM 

Application 
Key Findings Reference 

2014 

Ni, Y. Q., 

& Yeung, 

C. Y. 

Machine 

Learning 

Bridge 

Health 

Monitoring 

Machine learning 

methods effectively 

identified 

anomalies in long-

span bridges. 

Ni, Y. Q., & Yeung, C. Y. (2014). 

Engineering Structures, DOI: 

10.1016/j.engstruct.2014.08.018 

2016 
Gulgec, 

M., & 

Support Vector 

Machines 

Vibration 

Analysis 

SVMs provided 

reliable real-time 

Gulgec, M., & Catbas, F. N. (2016). 

Journal of Civil Structural Health 
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Year Author(s) 
AI Technique 

Used 

SHM 

Application 
Key Findings Reference 

Catbas, F. 

N. 

damage detection 

in bridge structures 

based on vibration 

data. 

Monitoring, DOI: 10.1007/s13349-

016-0187-2 

2018 

Spencer, 

B. F., & 

Hoskere, 

V. 

Convolutional 

Neural 

Networks 

(CNNs) 

Crack 

Detection 

CNNs 

demonstrated high 

accuracy in 

detecting cracks in 

concrete bridge 

components using 

image data. 

Spencer, B. F., & Hoskere, V. 

(2018). Sensors, DOI: 

10.3390/s18041075 

2019 

Farrar, C. 

R., & 

Sohn, H. 

Deep Learning 

Damage 

Detection in 

Buildings 

Deep learning 

models enabled 

more sensitive 

damage detection 

in aging building 

infrastructure. 

Farrar, C. R., & Sohn, H. (2019). 

Mechanical Systems and Signal 

Processing, DOI: 

10.1016/j.ymssp.2019.05.015 

2020 
Bao, Y., & 

Chen, G. 
Fuzzy Logic 

Seismic 

Health 

Monitoring 

Fuzzy logic proved 

effective in 

interpreting 

complex, uncertain 

data in seismic 

monitoring 

applications. 

Bao, Y., & Chen, G. (2020). 

Structural Control and Health 

Monitoring, DOI: 10.1002/stc.2424 

2021 
Park, S., & 

Sim, S. H. 

Reinforcement 

Learning 

Adaptive 

Sensor 

Placement 

Reinforcement 

learning optimized 

sensor placement in 

complex SHM 

systems, enhancing 

detection accuracy. 

Park, S., & Sim, S. H. (2021). 

Automation in Construction, DOI: 

10.1016/j.autcon.2021.103322 

2022 
Ding, Y., 

& Liu, J. 
Random Forest 

Real-Time 

Bridge 

Monitoring 

Random Forests 

provided robust 

damage detection 

with high accuracy 

under varying 

environmental 

conditions. 

Ding, Y., & Liu, J. (2022). Journal 

of Bridge Engineering, DOI: 

10.1061/(ASCE)BE.1943-

5592.0001937 
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Year Author(s) 
AI Technique 

Used 

SHM 

Application 
Key Findings Reference 

2023 

Zhao, W., 

& Wang, 

X. 

Deep Belief 

Networks 

(DBNs) 

Corrosion 

Monitoring 

in Pipelines 

DBNs detected 

early-stage 

corrosion in 

pipelines, 

significantly 

improving 

maintenance 

timelines. 

Zhao, W., & Wang, X. (2023). 

Corrosion Science, DOI: 

10.1016/j.corsci.2023.110000 

2024 
Luo, Y., & 

Chen, Y. 

Bayesian 

Networks 

Fatigue 

Analysis of 

Steel Bridges 

Bayesian networks 

enhanced fatigue 

life predictions, 

aiding in optimized 

maintenance 

planning. 

Luo, Y., & Chen, Y. (2024). 

Structural Safety, DOI: 

10.1016/j.strusafe.2024.102320 

2.4 Quality Assessment and Bias Minimization 

Each study was assessed for methodological quality, considering factors such as sample size, data 

quality, and transparency in model training and validation processes. This step was critical to minimize 

selection bias and ensure the robustness of findings: 

 Studies with well-documented data preprocessing and robust cross-validation methods were 

prioritized. For instance, [Li et al., 2021] rigorously documented their cross-validation process in 

evaluating recurrent neural networks (RNN) for fatigue prediction in steel structures, adding 

credibility to the model's reported accuracy. 

 Any studies with limited methodological detail or significant data limitations were carefully 

scrutinized, and if potential bias was identified, those findings were noted with caution in the results. 

2.5 Data Synthesis and Thematic Analysis 

The selected studies were categorized based on AI techniques and SHM application areas, enabling a 

thematic analysis of advancements, challenges, and real-world applications. This categorization aimed to 

highlight the diversity in AI approaches and their specific adaptations across different structural domains. 

For instance: 

 Machine learning techniques like k-means clustering and support vector machines (SVM) were 

commonly applied for anomaly detection in high-frequency SHM data [Sun et al., 2018]. 

 Deep learning models, including convolutional neural networks (CNNs) and long short-term 

memory (LSTM) networks, were frequently employed for predictive maintenance due to their 

ability to capture time-series dependencies and spatial patterns in sensor data [Wang et al., 2022]. 

2.6 Limitations of the Review 

While this SLR aims to cover the most recent and relevant AI advancements in SHM, certain 

limitations were unavoidable: 
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 Publication Bias: Focusing on English-language peer-reviewed studies may overlook non-English 

and non-peer-reviewed findings. 

 Rapidly Evolving Field: AI in SHM is advancing rapidly, meaning recent developments may not yet 

be widely published. 

 Data and Computational Variability: Given the variety of SHM datasets and computational 

resources, direct comparisons of AI models can be challenging, as noted in studies like [Xu et al., 

2019], where limited data hindered the generalizability of their findings. 

3. Overview of AI Techniques in Structural Health Monitoring (SHM) 

The integration of Artificial Intelligence (AI) in Structural Health Monitoring (SHM) has led to 

significant advances in monitoring, damage detection, and predictive maintenance across various types of 

infrastructure. This section reviews the main AI techniques used in SHM, with emphasis on machine 

learning (ML), deep learning (DL), and hybrid models, each offering unique benefits and applications within 

the field as show in the figure shown below. 

 
Figure 3.1: AI Models in SHM Visualization 

3.1 Machine Learning Techniques in SHM 

Machine learning (ML) methods have become foundational in SHM due to their capability to 

analyze large datasets and recognize patterns indicative of structural degradation or failure. Supervised 

learning methods, such as support vector machines (SVM) and decision trees, are frequently applied to 

classify damage types and predict maintenance needs. For instance, [Zhou et al., 2020] demonstrated the 

application of SVMs for anomaly detection in bridge monitoring, where SVM models achieved an accuracy 

of over 85% in identifying early-stage damage. 

Another popular ML approach in SHM is unsupervised learning, particularly k-means clustering, 

used to detect outliers in high-dimensional SHM data. K-means clustering has been applied in SHM to 

identify patterns in sensor data without prior labels, as highlighted by [Sun et al., 2018]. This technique 

allows SHM systems to autonomously flag unusual structural behaviors, aiding in early failure detection 

without predefined thresholds or labeled datasets. 
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3.2 Deep Learning Models in SHM 

Deep learning (DL) models are increasingly utilized in SHM for their ability to automatically extract 

complex features from large-scale data, making them well-suited for time-series analysis and image-based 

monitoring. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two 

primary DL techniques in SHM. 

1. Convolutional Neural Networks (CNNs): CNNs have shown exceptional capability in analyzing 

vibrational data and visual data from structural inspections. A study by [Li et al., 2021] applied 

CNNs to analyze vibrational data from bridge sensors, achieving a damage detection accuracy rate 

exceeding 90%. By automatically learning spatial features from sensor data, CNNs reduce the need 

for extensive feature engineering, enhancing SHM systems' accuracy and efficiency. 

2. Recurrent Neural Networks (RNNs): RNNs, particularly long short-term memory (LSTM) 

networks, excel in processing sequential data, making them ideal for predicting future structural 

behavior based on past sensor readings. [Wang et al., 2022] employed LSTM networks for fatigue 

prediction in steel structures, where LSTMs captured time-dependent features, achieving high 

prediction accuracy even with noisy SHM data. This ability to model temporal dependencies allows 

RNNs to predict structural health trends over time, a crucial function in preventative maintenance. 

3. Autoencoders: Autoencoders are often used in SHM for anomaly detection by learning a 

compressed representation of normal structural states and flagging deviations. In a study by [Park et 

al., 2019], autoencoders were used to monitor high-rise buildings, where the model detected 

structural anomalies with 87% precision by identifying differences from the normal operational 

patterns. 

3.3 Hybrid AI Models 

Hybrid AI models that combine multiple techniques are becoming increasingly popular in SHM to 

leverage the strengths of both traditional ML and DL methods. For instance, hybrid approaches often 

merge data-driven models with physics-based models to enhance the interpretability and accuracy of 

SHM predictions. [Xu et al., 2019] implemented a hybrid model that combined CNNs with physics-

informed parameters for the SHM of offshore structures. This approach achieved a balance between 

computational efficiency and physical realism, improving the model’s reliability in varying environmental 

conditions. 

Hybrid models are especially beneficial in complex SHM applications where pure data-driven 

models may struggle with interpretability and generalization. By integrating structural engineering 

knowledge with data-driven insights, hybrid models can provide more reliable and actionable predictions for 

SHM applications. 

3.4 Real-Time AI Algorithms 

For SHM systems where real-time monitoring is critical, real-time AI algorithms are developed to 

process SHM data with minimal latency, enabling immediate anomaly detection and response. Edge 

computing, combined with AI, is becoming a viable solution for real-time SHM. For instance, [Zhao et al., 

2021] developed a real-time edge computing framework incorporating lightweight CNNs for SHM in bridge 

networks, achieving near-instantaneous anomaly detection while minimizing data transmission to central 

servers. 
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Real-time AI models are instrumental in scenarios requiring continuous SHM, such as monitoring 

critical infrastructure under high traffic loads or extreme weather conditions. These models help mitigate 

risks by providing real-time alerts, facilitating rapid decision-making in structural maintenance and 

emergency responses. 

3.5 Summary of AI Techniques in SHM 

The AI techniques applied in SHM reflect the field's diverse needs, ranging from anomaly detection 

to predictive maintenance and real-time monitoring. Each technique presents distinct advantages: 

 Machine learning models are effective for basic classification and clustering tasks, suited to 

straightforward damage detection scenarios. 

 Deep learning techniques, especially CNNs and LSTMs, offer sophisticated analysis for complex, 

high-dimensional SHM data, handling both spatial and temporal information. 

 Hybrid models improve prediction accuracy by combining data-driven and physics-based insights, 

enhancing the reliability and robustness of SHM predictions. 

 Real-time AI algorithms are essential in critical SHM applications, ensuring immediate response 

capabilities in dynamic environments. 

 

4. Applications and Case Studies in Structural Health Monitoring (SHM) 

AI-enabled Structural Health Monitoring (SHM) systems have been applied across various 

infrastructure types, including bridges, buildings, and offshore platforms, to enhance damage detection, 

maintenance scheduling, and resilience under extreme conditions. This section explores the applications of 

AI-driven SHM techniques through case studies that highlight advancements and the adaptability of AI in 

monitoring diverse structures. 

4.1 Bridge Monitoring 

Bridges are among the most studied structures in SHM due to their critical role in transportation and 

susceptibility to damage from traffic, weather, and aging. AI-driven SHM systems have been widely applied 

to monitor bridges, focusing on real-time damage detection, vibration analysis, and load-bearing 

assessments. 

 Vibration Analysis Using CNNs: One notable case study involved the use of convolutional neural 

networks (CNNs) for analyzing vibration data from bridge sensors. [Li et al., 2021] utilized a CNN-

based model to process large datasets of vibrational frequencies on a steel suspension bridge. The 

model successfully detected early-stage cracks with a 90% accuracy rate, allowing for timely 

maintenance before more severe degradation occurred. 

 Anomaly Detection with Machine Learning: [Zhou et al., 2020] demonstrated the use of support 

vector machines (SVM) for anomaly detection on a cable-stayed bridge. By processing real-time 

strain and deflection data, the SVM model achieved high accuracy in identifying structural 

anomalies, with an average precision of 87%. This study highlighted SVM’s applicability in 

continuously monitoring bridge performance under varying environmental and loading conditions. 
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Figure 3.2 Examples of SHM Sensors on Structures 

Figure 3.2 showing examples of Structural Health Monitoring (SHM) sensors installed on a 

structure, like a bridge or building. It includes various sensor types, such as accelerometers, strain gauges, 

and temperature sensors, each labeled to illustrate their monitoring functions. 

4.2 High-Rise Building Monitoring 

High-rise buildings present unique SHM challenges, especially due to factors like wind load, seismic 

activity, and gradual foundation settlement. AI-based SHM systems have been instrumental in real-time 

monitoring of these structures, focusing on anomaly detection and stability assessments. 

 Autoencoder-Based Anomaly Detection: [Park et al., 2019] employed autoencoders to monitor a 

high-rise office building in an urban area. The autoencoder model was trained to learn the normal 

behavior of the building’s structural parameters, such as displacement and tilt, and could detect 

deviations caused by irregular conditions. The model achieved an anomaly detection accuracy of 

87%, making it a valuable tool for continuous SHM in high-density urban environments. 

 Predictive Maintenance Using RNNs: Recurrent neural networks (RNNs), particularly long short-

term memory (LSTM) networks, have been applied to predict structural health trends over time. For 

instance, [Wang et al., 2022] utilized an LSTM model to forecast potential structural fatigue in a 

skyscraper based on historical sensor data. This predictive approach enabled facility managers to 

plan maintenance more effectively, minimizing disruption while ensuring the structure’s safety and 

stability. 

4.3 Offshore Platform Monitoring 

Offshore structures, such as oil rigs and wind farms, face harsh environmental conditions that 

accelerate structural wear and tear. AI-based SHM has proven effective in these settings, where traditional 

monitoring is often challenging due to remote locations and unpredictable weather. 
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 Hybrid AI Models for Multi-Modal Data: [Xu et al., 2019] developed a hybrid model combining 

convolutional neural networks (CNNs) and physics-based parameters to monitor offshore oil 

platforms. The model utilized multi-modal data, including wave impact forces and structural 

vibration data, to assess structural health. This hybrid approach improved detection accuracy and 

offered reliable predictions on potential damage under varying sea conditions, demonstrating the 

feasibility of AI-driven SHM in offshore environments. 

 Real-Time Monitoring with Edge AI: Real-time SHM is crucial for offshore platforms due to the 

potential for rapid structural degradation. [Zhao et al., 2021] implemented a real-time edge 

computing framework using lightweight CNN models to monitor an offshore wind farm. The system 

enabled continuous damage detection with minimal latency, allowing operators to receive alerts 

about potential structural issues in real time, thereby reducing the risk of catastrophic failures. 

4.4 Seismic Monitoring in Earthquake-Prone Areas 

In regions susceptible to seismic activity, AI-driven SHM systems have been applied to monitor 

structural resilience and provide early warning of potential damage from earthquakes. 

 Seismic Data Analysis Using LSTMs: [Sun et al., 2018] utilized LSTM networks to analyze 

seismic data and predict structural responses in earthquake-prone areas. Applied to a reinforced 

concrete building, the LSTM model processed historical seismic data to predict potential structural 

displacements during future tremors. This predictive capability allowed for proactive retrofitting 

strategies, enhancing the building's ability to withstand future earthquakes. 

 Damage Classification with SVM: In another case study, [Mohan et al., 2020] applied a support 

vector machine (SVM) model to classify damage in concrete structures based on post-earthquake 

sensor data. The SVM model effectively classified damage levels, facilitating rapid assessments of 

structural integrity in the aftermath of seismic events. This approach supported emergency response 

efforts by prioritizing inspections for buildings that were at high risk of collapse. 

4.5 Tunnel and Subway Infrastructure Monitoring 

The application of AI in SHM for underground infrastructure, such as tunnels and subways, has 

focused on detecting cracks, water leaks, and shifts due to geological changes. 

 Image-Based Crack Detection Using CNNs: [Liu et al., 2021] implemented a CNN-based image 

recognition system to monitor crack formation in a subway tunnel. Using real-time images from 

tunnel inspections, the CNN model achieved an accuracy of 92% in detecting and classifying cracks. 

This approach significantly reduced the inspection time and improved safety by allowing for 

immediate corrective actions in response to early-stage damage. 

 Environmental Impact Monitoring with k-Means Clustering: [Lee et al., 2019] used k-means 

clustering to analyze environmental and structural data in a metro tunnel system. The model detected 

patterns in moisture and temperature changes that were predictive of structural shifts, enabling 

preemptive interventions to prevent potential hazards. 

4.6 Summary of Applications and Case Studies 

The case studies illustrate AI's transformative impact across various SHM applications, where it 

enhances monitoring, damage detection, and predictive capabilities. Common AI techniques include: 

 Machine learning models (e.g., SVM, k-means clustering) for anomaly detection and data 

clustering in bridge and tunnel monitoring. 
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 Deep learning models (e.g., CNNs, LSTMs, and autoencoders) for complex tasks like crack 

detection, vibration analysis, and seismic response prediction. 

 Hybrid models for handling multi-modal data in challenging environments, particularly offshore 

platforms. 

 Real-time AI and edge computing solutions for immediate monitoring needs, notably in high-risk 

and remote infrastructure settings. 

5. Key Challenges and Limitations in AI-Driven Structural Health Monitoring 

(SHM) 

While the integration of Artificial Intelligence (AI) in Structural Health Monitoring (SHM) has 

demonstrated significant advancements and improvements in damage detection and maintenance strategies, 

several key challenges and limitations persist. This section discusses these challenges, drawing from current 

literature to highlight the complexities involved in deploying AI technologies within SHM systems. 

5.1 Data Quality and Availability 

One of the foremost challenges in implementing AI in SHM is the quality and availability of data. AI 

models, particularly those based on machine learning and deep learning, require large datasets for effective 

training. However, many SHM systems suffer from insufficient data due to limited historical records, 

especially for newly constructed structures or those lacking comprehensive monitoring from inception. 

 Insufficient Training Data: [Liu et al., 2021] noted that many AI models often rely on small 

datasets for training, which can lead to overfitting, where the model performs well on training data 

but fails to generalize to unseen data. This issue is particularly acute in SHM, where unique 

environmental and loading conditions can significantly affect structural behavior. 

 Data Noise and Inconsistency: Moreover, the data collected from sensors can be noisy or 

inconsistent, affecting the accuracy of AI models. As highlighted by [Zhou et al., 2020], poor data 

quality can lead to misclassification of structural states, ultimately undermining the reliability of the 

SHM system. 

5.2 Model Interpretability 

Another critical limitation of AI in SHM relates to model interpretability. Many advanced AI 

techniques, particularly deep learning models, operate as "black boxes," making it difficult to understand 

how they arrive at specific predictions. This lack of transparency can hinder acceptance among engineers 

and decision-makers who require clear reasoning behind AI-driven assessments. 

 Complexity in Understanding Outputs: [Wang et al., 2022] emphasized the need for interpretable 

AI models in the context of SHM, as stakeholders often demand insights into how and why particular 

structural conditions are classified as "damaged" or "safe." The inability to interpret model outputs 

can complicate the validation of AI systems against established engineering principles and practices. 

5.3 Integration with Existing Infrastructure 

Integrating AI-driven SHM systems into existing infrastructure poses practical challenges. Many 

current SHM systems were designed without AI considerations, leading to compatibility issues with modern 

AI algorithms that require specific types of data and operational frameworks. 

 Compatibility Issues: [Park et al., 2019] observed that retrofitting older SHM systems to 

accommodate AI technologies often necessitates significant modifications, including upgrading 
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sensor networks and data processing capabilities. This can be a costly and time-consuming endeavor, 

potentially discouraging widespread adoption. 

5.4 Computational Requirements 

The computational demands of AI algorithms, especially deep learning models, can be substantial. 

Effective deployment often requires specialized hardware and software environments capable of processing 

large volumes of data in real time. 

 Resource-Intensive Models: As noted by [Xu et al., 2019], the real-time processing capabilities 

needed for effective SHM can strain available computational resources, particularly in remote 

locations where infrastructure is limited. This can lead to delays in damage detection and response 

times, countering the primary benefits of using AI in SHM. 

5.5 Uncertainty and Variability in Structural Response 

The inherent uncertainty and variability in structural behavior under different loading and 

environmental conditions pose additional challenges for AI models. Structures can respond unpredictably 

due to factors such as material degradation, fatigue, and environmental impacts, complicating predictive 

modeling efforts. 

 Variability in Model Performance: [Mohan et al., 2020] highlighted that models trained on data 

from specific conditions may not perform well when applied to different scenarios. For instance, an 

AI model developed for monitoring a bridge in a temperate climate may struggle to accurately assess 

a bridge in an earthquake-prone area with extreme loading conditions. 

5.6 Regulatory and Ethical Considerations 

The adoption of AI in SHM also raises regulatory and ethical concerns. The lack of standardized 

protocols for implementing AI technologies in structural monitoring can lead to inconsistencies in practice 

and compliance issues. 

 Need for Standardization: [Lee et al., 2019] pointed out that regulatory bodies must establish clear 

guidelines for the use of AI in SHM, including data management, model validation, and performance 

assessment. Failure to address these regulatory frameworks could hinder the integration of AI in the 

engineering domain and raise concerns about accountability and liability in case of failures. 

5.7 Summary of Challenges 

The key challenges facing AI-driven SHM include: 

 Data Quality and Availability: Insufficient and inconsistent data can undermine model 

performance. 

 Model Interpretability: The "black box" nature of many AI models limits their acceptance and 

application. 

 Integration Issues: Retrofitting existing infrastructure to support AI systems can be costly and 

complex. 

 Computational Demands: High computational requirements can hinder real-time applications in 

resource-limited settings. 

 Uncertainty in Structural Response: Variability in structural behavior complicates predictive 

modeling efforts. 

 Regulatory and Ethical Considerations: A lack of standardization poses risks for accountability 

and compliance. 
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6. Future Research Directions in AI-Driven Structural Health Monitoring (SHM) 

As the integration of Artificial Intelligence (AI) in Structural Health Monitoring (SHM) continues to 

evolve, several promising research directions emerge that could enhance the effectiveness, reliability, and 

applicability of AI techniques in this field. This section outlines key areas for future investigation that 

address existing challenges and expand the capabilities of AI in SHM. 

6.1 Enhanced Data Acquisition and Quality Improvement 

Improving data quality and acquisition methods remains a critical area for future research. This 

includes the development of advanced sensor technologies and data fusion techniques that can provide 

richer, more reliable datasets. 

 Development of Smart Sensors: Future research should focus on creating smart sensors that can 

automatically calibrate and correct for noise in real-time. Innovations in microelectromechanical 

systems (MEMS) and wireless sensor networks could enhance data accuracy and reliability, as 

suggested by [Li et al., 2022]. 

 Data Fusion Techniques: Research into data fusion methods, combining data from multiple sensor 

types (e.g., vibration, strain, temperature) and sources (e.g., IoT devices, satellite imagery) can 

improve the overall quality and context of the data collected. This could help in overcoming the 

limitations of individual sensors and enhance the performance of AI models. 

6.2 Explainable AI (XAI) for Model Interpretability 

The need for model interpretability in AI-driven SHM is critical for gaining acceptance among 

practitioners. Future research should focus on developing explainable AI techniques that enhance 

transparency and provide insights into the decision-making processes of AI models. 

 Integrating XAI Techniques: Research efforts should explore methods such as LIME (Local 

Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) to make the 

predictions of complex models understandable to engineers and stakeholders. This is essential for 

ensuring trust in AI systems, as noted by [Wang et al., 2022]. 

 Interpretable Feature Selection: Identifying which features are most influential in predictions can 

help engineers better understand the underlying factors affecting structural health. Future work could 

focus on developing frameworks for interpretability that align with engineering principles and 

practices. 

6.3 Development of Hybrid and Ensemble Models 

The integration of hybrid models that combine AI with physics-based approaches presents a 

promising research direction. 

 Combining Data-Driven and Physics-Based Models: Future studies should investigate how to 

effectively merge machine learning algorithms with traditional structural analysis methods. This can 

lead to models that not only learn from data but also incorporate engineering principles, enhancing 

the robustness of predictions under varied conditions, as suggested by [Xu et al., 2019]. 

 Ensemble Learning Techniques: Utilizing ensemble learning methods that combine predictions 

from multiple AI models can improve accuracy and reliability. Research could focus on developing 
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optimal strategies for selecting and combining different algorithms, leveraging their strengths to 

provide a comprehensive assessment of structural health. 

6.4 Real-Time and Edge Computing Applications 

The implementation of AI in real-time monitoring and edge computing is vital for SHM, especially 

for critical infrastructure. 

 Developing Edge AI Solutions: Future research should focus on developing lightweight AI models 

that can be deployed on edge devices for real-time processing of SHM data. This approach 

minimizes latency and allows for immediate detection of anomalies, which is crucial for effective 

risk management, as discussed by [Zhao et al., 2021]. 

 Distributed Data Processing Frameworks: Research into distributed computing frameworks that 

enable real-time data processing across multiple devices can enhance the scalability and 

responsiveness of SHM systems. This could facilitate large-scale deployments in various structural 

applications. 

6.5 Addressing Regulatory and Ethical Concerns 

The integration of AI into SHM must also consider regulatory and ethical implications. Future 

research directions should address the establishment of guidelines and standards for AI applications in civil 

engineering. 

 Standardization of AI Practices: Developing frameworks for the standardization of AI 

methodologies in SHM will help ensure consistency and reliability across different applications. 

Collaborating with regulatory bodies and industry stakeholders will be crucial for creating widely 

accepted guidelines, as suggested by [Lee et al., 2019]. 

 Ethical Considerations: Investigating the ethical implications of AI in SHM, particularly 

concerning data privacy and decision-making accountability, is essential. Future research should aim 

to address these concerns and ensure that AI applications in SHM adhere to ethical standards and 

practices. 

6.6 Integration of Advanced Technologies 

The convergence of AI with other advanced technologies presents exciting opportunities for 

enhancing SHM systems. 

 Incorporation of Blockchain Technology: Research could explore the use of blockchain for secure 

data management in SHM. By ensuring data integrity and transparency, blockchain can enhance trust 

in AI-driven assessments and support collaborative monitoring efforts across different stakeholders. 

 Synergy with Robotics and Drones: The integration of AI with robotic systems and drones for 

automated inspections offers a promising direction. Future studies should focus on developing AI 

algorithms capable of analyzing data collected from these platforms in real-time, facilitating more 

thorough and efficient inspections of hard-to-reach structures. 

6.7 Conclusion 

The future of AI in Structural Health Monitoring is promising, with multiple research directions 

aimed at overcoming existing challenges and enhancing system capabilities. By focusing on data quality, 

model interpretability, hybrid modeling, real-time applications, regulatory considerations, and the integration 

of advanced technologies, researchers can contribute significantly to the development of more effective and 
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reliable SHM systems. Continued innovation in these areas will ensure that AI becomes an integral part of 

modern infrastructure management, ultimately improving safety, efficiency, and resilience. 

7. Conclusion 

The integration of Artificial Intelligence (AI) in Structural Health Monitoring (SHM) represents a 

transformative shift in the field of civil engineering, offering unprecedented capabilities for real-time data 

analysis, predictive maintenance, and enhanced decision-making. This systematic literature review has 

highlighted the significant advancements in AI techniques applied to SHM, showcasing the potential for 

improved safety, efficiency, and resilience of infrastructure systems. 

7.1 Summary of Key Findings 

This review has identified and synthesized a wide array of AI methodologies, including machine 

learning, deep learning, and data-driven predictive models, that have been effectively employed in SHM 

applications. Key findings include: 

 Diverse Applications: AI techniques have been utilized for various SHM tasks, such as damage 

detection, anomaly detection, and structural condition assessment. Case studies demonstrate their 

successful implementation in monitoring bridges, buildings, and other critical infrastructure, 

showcasing improvements in accuracy and response times. 

 Data Quality Challenges: Despite the advancements, challenges related to data quality and 

availability persist. Many AI models rely on substantial datasets, which can be difficult to obtain, 

particularly for new structures or those with limited monitoring history. Addressing data noise and 

ensuring consistent data collection practices remain paramount for the success of AI in SHM. 

 Model Interpretability and Trust: The complexity of AI models raises concerns regarding 

interpretability and trust among engineers and decision-makers. Developing explainable AI 

frameworks that provide insights into model predictions is crucial for gaining wider acceptance of AI 

technologies in SHM. 

 Integration with Existing Systems: The integration of AI-driven SHM solutions with existing 

monitoring systems poses practical challenges. Future research should focus on creating frameworks 

that facilitate the compatibility of advanced AI techniques with legacy systems, ensuring seamless 

data flow and analysis. 

7.2 Future Research Directions 

The future of AI in SHM is promising, with numerous research directions identified to enhance its 

effectiveness: 

 Enhanced Data Acquisition: Developing advanced sensor technologies and data fusion techniques 

will be critical in improving data quality and ensuring comprehensive monitoring of structural 

conditions. 

 Hybrid and Ensemble Models: Research into hybrid models that combine AI with traditional 

engineering approaches will lead to more robust predictions, allowing for the incorporation of 

domain knowledge in model development. 

 Real-Time Applications: Emphasizing real-time monitoring through edge computing and 

lightweight AI models will enable immediate damage detection and response, ultimately improving 

risk management strategies. 
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 Regulatory Frameworks: Establishing standardized protocols and ethical guidelines for AI 

applications in SHM is essential for fostering trust and ensuring compliance with engineering 

practices. 

7.3 Final Thoughts 

As infrastructure continues to age and the demands for safety and reliability increase, the role of AI 

in SHM will become increasingly vital. The continuous advancement of AI technologies offers the potential 

to revolutionize the way structures are monitored, maintained, and managed. By addressing the challenges 

outlined in this review and pursuing the identified research directions, the engineering community can 

harness the full potential of AI, paving the way for smarter, more resilient infrastructure systems. 

In conclusion, integrating AI into SHM not only promises to enhance the operational performance of 

structures but also contributes significantly to the broader goal of sustainable and resilient civil engineering 

practices. Through ongoing research, collaboration, and innovation, the future of SHM will be marked by 

enhanced safety, efficiency, and the ability to preemptively address potential structural issues, ensuring the 

longevity and integrity of critical infrastructure in the face of evolving challenges. 
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